Unidad 3. TEORÍA DE LA PROBABILIDAD (XV)

Ejemplo 27

Una encuesta realizada en el centro de Huacho, encontró que el 70% de los vehículos que se desplazaban por sus principales arterias, presentaban fuerte emanación de monóxido de carbono. De todos estos vehículos, el 80% eran de transporte público. De aquellos que no despedían monóxido, sólo el 10% eran de transporte público. Si un día determinado, nos ubicamos en la esquina de las avenidas Echenique y 28 de Julio, y elegimos un vehículo cualquiera, ¿cuál es la probabilidad de que pertenezca al transporte público?

Solución

Sean los eventos:

G: “El vehículo seleccionado emite monóxido”<

T: “El vehículo seleccionado perteneceal transporte público”

En el diagrama de árbol de la figura 3.19 podemos apreciar, según nos muestra las flechas, que el evento T ocurre dedos formas: Que sea de transportepúblico(T) y emita monóxido (T ∩ M) oque sea de transporte público y no emitamonóxido (T ∩ M’ ).

Por ello, T = T ∩ M ∪ T ∩ M’. Y como los eventos M y M’ forman una partición de Ω , podemos aplicar el Teorema de la Probabilidad Total. Por lo que P(T) = P(M)P(T/M) + P(M’ )P(T/M’ )

= 0.7 x 0.8 + 0.3 x 0.1

= 0.59

Ejemplo 28

Una máquina es sometida a evaluación. Por recientes resultados, se sabe que el 20% de los productos que elabora, son defectuosos. Si el control del rendimiento se le encarga a un técnico, la probabilidad de que diagnostique correctamente cuando el producto es defectuoso, es 0.85, mientras que se equivoque en su diagnóstico, es 0.35. Si se elige un producto controlado por dicho técnico, calcule la probabilidad de que


< a) sea un producto diagnosticado como defectuoso

b) sea un producto que pasó como bueno

Solución

Sean los eventos:

A: El producto es diagnosticado como defectuoso

D: El producto es defectuoso

a) Según la figura 3.30, P(A) = P(D)P(A/D) + P(D’ )P(A/D’ )

          = 0.2 x 0.85 + 0.8 x 0.35

          = 0.45

b) Contrariamente al caso a), se trata de trabajar con los ramales no indicados por las flechas. Según la figura, P(A’ ) = P(D)P(A’ /D) + P(D’ )P(A’ /D’ )

          = 0.2 x 0.15 + 0.8 x 0.65

          = 0.55

 

Pág. 3.15

Atrás  Inicio  Adelante





Página inicial  Cursos Informática Gratuitos

Síguenos en:   Facebook       Sobre aulaClic            Política de Cookies